length along flow axis; t, time; C, impurity concentration; D, coefficient of molecular diffusion; Dgf, effective-
diffusion coefficient,
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MATHEMATICAL MODELING OF PARTICLE GROWTH

L. A, Bakhtin, N. A. Shakhova, UDC 532.529.5
A. I. Pronin, N. A. Kudryavtsev,
Ya. M. Shul'man, and L. A. Kamneva

Continuity equations for particle distributions by size and residence times are considered in pro-
cesses associated with particle growth. The relation between these equations and the particle-
balance equation in phase space is shown.

Particle~-balance equations (continuity equations for particle distributions) occupy an important place in
the study of processes associated with particle growth [1-11]. The most general approach to the formulation
of such equations was outlined in [12, 13], which proposed the description of a heterogeneous process as-
sociated with any transformation of particles of a disperse phase, such as the motion of a point reflecting
the state of the particle in a multidimensional phase space (a phase space is taken to be a system of spatial
coordinates and coordinates characterizing the internal state of the particle). The particle-balance equation

in this case is
dp, . X
22— div{ep,) +
Py (00y) ;—1

where py =p (X, ¥y X §1s- - -, £m) is the density of the particle distribution,

9 g\
o, (pl o) = @)

For a nonideal system, terms characterizing particle mixing must be introduced in Eq. (1). For
example, if particle mixing proceeds by the diffusion law, the appropriate equation is

dp, o~ 0 [ & ) ~ 2
el B —Dgradp) — 8 =, (2
o T (09 grad p,) ~ o, (pl i ¥,

In processes of particle growth, the particle size serves as the internal coordinate, If growth is ac-
companied by other processes (drying, chemical change, etc.), coordinates characteristic for these pro-
cesses (moisture content, degree of transformation, etc.) must be introduced into the equation. As a rule,
however, all these parameters may be represented as different functions of a single variable — 7, the
residence time of the particle in the apparatus. Thus, Eq. (2) may be written in the form

00 g dons P (3)
5 — div (wp, — D grad o,) I Py,

where ;, = py(%, ¥, 2, T).

It can easily be shown that several known solutions of the balance equations in processes of particle
growth [1-11] are partial cases of the solution of Egs. (2) and (3) for conditions of ideal mixing and ideal
substitution. In the present work, an attempt is made to solve the continuity equation of the particle distribu-
tion in the diffusion model for nonideal conditions.
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Fig. 1. Density of particle distribution by size
for various values of Dx/Wgl = 1/Pe(rj = 1 mm;

=3 mm): 1) 1/Pe = 0. 0005 2) 0.005; 3) 0.01;
4) 0.1; 5) 0.5; 6) 1;7) 1/Pe =5, (1/N)o(r), mm~';
r, mm,

In the one-dimensional case, for steady conditions, and in the absence of particle sources of Sinks (for
wy = const and W, = const), Egs. (2) and (3) take the form

dp(r, ) dp(r, x) Fp(r, x) _
YT e T T gy DT gm @
dp (t, x) ¢p (v, %)
y —————— — Dx IR — 0
“ Ox Ox? ©

In solvmg Egs. (4) and (5), the following initial conditions are taken: 7= 0; x = 0; r = ry; p (T, 0) = No(7);
andp(r, 0) = No (r—ry). At the exit from the apparatus, (x ={), the solutions are

o(r, )= N > exp | — [‘gF“‘-‘__.(’JLﬂ__ , (6)
2wyt l/-:rc( wxl )wpro(r—ri) 4( w:l )wp'ro (r—r)
N ( — )
) .. -\ S I Ui 17 A I
per. D 2y nD exp [ 4D n ] M

As is evident from Fig. 1, the broadest spectrum of the particle distribution by size corresponds to
ideal mixing (Dy/Wyj— «) and the narrowest, to ideal substitution (Dy/ wxl— 0). For initially monodisperse
conditions, the latter case corresponds to a monodisperse product with particle size r = rj + WpT.

The characteristics of the particle distribution by size necessary to determine the parameters of the
distribution from experimental data are the maximum density of the distribution

¥ o Vs

)+1—1
—exp| —

Pmax = By
2‘”[»"’01/ af D, ‘/ ’__DL)2__ D, 2( D,
w,l w,! w,l w,l

@®)
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the mode

oV (o) o | o ®

the mathematical expectation

= (2o 2 o

This solution may be used to analyze processes associated with particle growth (dehydration of solutions,
granulation of melts, etc.) occurring in apparatus of drum-granulator type — dryers, equipment with a
fluidized bed of corrugated type, and a variety of other nonideal apparatus.

and the dispersion

NOTATION

D, mixing coefficient; ¢, length of apparatus; ltI, number of particles in unit working volume of the ap-
paratus; r, radius of the particle at any instant; r;, initial radius of particle; t, time; -‘_N’, vector of particle
velocity; Wos particle growth rate; x, y, z, spatial coordinates of particle; 6(r—rj), 6(7), delta functions;
$1s- -+ 3, internal coordinates of particle; v, p,, densities of particle distribution (number of particles per
unit volume of phase space); 7, residence time of particle in apparatus; 7, mean residence time; i {, ¥,
densities of particle sources and sinks.

LITERATURE CITED

1. 0. M. Todes, Problems of Kinetics and Catalysis [in Russian], No. 7, Izd. Akad. Nauk SSSR (1949),
p. 137.

2., O. M. Todes, Yu. Ya. Kaganovich, V. A. Seballo, and 8. P. Nalimov, Khim. Prom., No. 6§, 434
(1968).

3. V. A, Seballo, Candidate's Dissertation, Lensovet Leningrad Technological Institute (1968),

4. 8. P. Nalimov, Candidate's Dissertation, Lensovet Leningrad Technological Institute (1968).

5. O. M. Todes, Yu. Ya. Kaganovich, S, P.Nalimov, V,A,Seballo, et al,, in: Hydrodynamics and Heatand 1
Mass Transfer in'a Fluidized Bed [in Russian], Ivanovo (1971), p. 69.

6. A. D. Randolph and M. A, Larson, AIChE J., 8, No. 5, 639 (1962).

7. L. A, Bakhtin, in: Proceedings of the A. A. Zhdanov Gor'kii Polytechnic Institute. Chemistry and
Chemical Engineering [in Russian], Vol. 25, No. 14 (1969), p. 8.

8. L. A, Bakhtin, Teor. Osn, Khim. Tekhnol., 4, No. 6, 882 (1970).

9. L. A. Bakhtin, P. 8. Voloshin, and A. I. Pronin, in: Hydrodynamics and Heat and Mass Transferina
Fluidized Bed [in Russian], Ivanovo (1971), p. 3.

10. L. A. Bakhtin, O. A, Gordetsova, and Ya. M, Shul'man, Teor. Osn. Khim, Tekhnol., 6, No. 3, 389
(1972).

11, L. A. Bakhtin, N. A. Kudryavtsev, A. I. Pronin, and P, V, Kudryavtsev, Teor. Osn. Khim. Tekhnol.,
7, No. 3, 452 (1973).

12, G. L Svetozarova and I. A. Burovoi, Inzh.-Fiz. Zh., 9, No. 1, 34 (1965).

13. I A. Burovoi, Automatic Control of Processes on a Fluidized Bed [in Russian], Metallurgiya (1969).

219



